Чем отличается трансформатор тока от трансформатора напряжения

В данной статье мы подробно рассмотрим что такое трансформатор тока, опишем принцип его работы, какие бывают типы, а так же расчеты и схемы трансформатора тока.

Описание и принцип работы

Трансформатор тока представляет собой тип «измерительного трансформатора», который предназначен для производства переменного тока в его вторичной обмотки, которое пропорционально току измеряется в его первичном.

Трансформаторы тока уменьшают токи высокого напряжения до гораздо более низкого значения и обеспечивают удобный способ безопасного контроля фактического электрического тока, протекающего в линии электропередачи переменного тока, с использованием стандартного амперметра.

 Принцип работы основного трансформатора тока немного отличается от обычного трансформатора напряжения.

Чем отличается трансформатор тока от трансформатора напряжения

В отличие от трансформатора напряжения или мощности, рассматриваемого ранее, трансформатор тока состоит из одного или нескольких витков в качестве своей первичной обмотки.

 Эта первичная обмотка может иметь либо один плоский виток, либо катушку из сверхпрочного провода, намотанного на сердечник, либо просто проводник или шину, расположенную через центральное отверстие, как показано на рисунке.

Купить трансформатор тока вы можете в популярном интернет магазине Алиэкспресс:

Чем отличается трансформатор тока от трансформатора напряжения

Из-за такого типа расположения трансформатор тока часто называют также «последовательным трансформатором», поскольку первичная обмотка, которая никогда не имеет более нескольких витков, соединена последовательно с проводником с током, питающим нагрузку.

Однако вторичная обмотка может иметь большое количество витков катушки, намотанных на многослойный сердечник из магнитного материала с малыми потерями.

Этот сердечник имеет большую площадь поперечного сечения, так что создаваемая плотность магнитного потока является низкой при использовании провода с меньшей площадью поперечного сечения, в зависимости от того, какой ток должен быть понижен, когда он пытается выдать постоянный ток, независимо от подключенной нагрузки.

Вторичная обмотка будет подавать ток либо на короткое замыкание, в виде амперметра, либо на резистивную нагрузку, пока напряжение, наведенное во вторичной обмотке, не станет достаточно большим, чтобы насытить сердечник или вызвать отказ из-за чрезмерного пробоя напряжения.

В отличие от трансформатора напряжения, первичный ток трансформатора тока не зависит от тока вторичной нагрузки, а контролируется внешней нагрузкой. Вторичный ток обычно оценивается в стандартный 1 Ампер или 5 Ампер для больших значений первичного тока.

Существует три основных типа трансформаторов тока: обмоточныйтороидальный и стержневой.

  • Обмоточный трансформатор тока — первичная обмотка трансформатора физически соединена последовательно с проводником, который несет измеренный ток, протекающий в цепи. Величина вторичного тока зависит от коэффициента оборотов трансформатора.
  • Тороидальный трансформатор тока — они не содержат первичной обмотки. Вместо этого линия, по которой проходит ток, протекающий в сети, проходит через окно или отверстие в тороидальном трансформаторе. Некоторые трансформаторы тока имеют «разделенный сердечник», который позволяет открывать, устанавливать и закрывать его, не отключая цепь, к которой они подключены.
  • Трансформатор тока стержневого типа — в этом типе трансформатора тока используется фактический кабель или шина главной цепи в качестве первичной обмотки, что эквивалентно одному витку. Они полностью изолированы от высокого рабочего напряжения системы и обычно крепятся болтами к токонесущему устройству.

Трансформаторы тока могут снизить или «понизить» уровни тока с тысяч ампер до стандартного выходного сигнала с известным отношением либо к 5 А, либо к 1 А для нормальной работы.

Таким образом, небольшие и точные приборы и устройства управления могут использоваться с трансформаторами тока, потому что они изолированы от любых высоковольтных линий электропередач.

Существует множество применений для измерения и использования для трансформаторов тока, таких как ваттметры, измерители коэффициента мощности, защитные реле или в качестве катушек отключения в магнитных выключателях или MCB.

Конструкция и схема трансформатора тока

Чем отличается трансформатор тока от трансформатора напряжения

Обычно трансформаторы тока и амперметры используются вместе как согласованная пара, в которой конструкция трансформатора тока такова, чтобы обеспечить максимальный вторичный ток, соответствующий полномасштабному отклонению амперметра. В большинстве трансформаторов тока существует приблизительное соотношение обратных витков между двумя токами в первичной и вторичной обмотках. Вот почему калибровка трансформатора тока обычно для определенного типа амперметра.

Большинство трансформаторов тока имеют стандартную вторичную номинальную мощность 5 А, при этом первичные и вторичные токи выражаются в таком соотношении, как 100/5.

 Это означает, что ток первичной обмотки в 20 раз больше, чем ток вторичной обмотки, поэтому, когда в первичном проводнике протекает 100 ампер, во вторичной обмотке будет протекать 5 ампер.

 Трансформатор тока, скажем, 500/5, будет производить 5 А во вторичной обмотке при 500 А в первичной обмотке, что в 100 раз больше.

Увеличивая количество вторичных обмоток Ns, ток вторичной обмотки можно сделать намного меньшим, чем ток в измеряемой первичной цепи, потому что, когда Ns увеличивается, Is уменьшается пропорционально. Другими словами, число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Трансформатор тока, как и любой другой трансформатор, должен удовлетворять уравнению ампер-виток, и мы знаем из нашего учебника по трансформаторам напряжения с двойной обмоткой, что это отношение витков равно:

Чем отличается трансформатор тока от трансформатора напряжения

из которого мы получаем:

Чем отличается трансформатор тока от трансформатора напряжения

Коэффициент тока устанавливает коэффициент витков, и, поскольку первичный обычно состоит из одного или двух витков, тогда как вторичный может иметь несколько сотен витков, соотношение между первичным и вторичным может быть довольно большим.

 Например, предположим, что номинальный ток первичной обмотки составляет 100А. Вторичная обмотка имеет стандартный рейтинг 5А. Тогда соотношение между первичным и вторичным токами составляет 100А-5А или 20: 1.

 Другими словами, первичный ток в 20 раз больше вторичного тока.

Однако следует отметить, что трансформатор тока с номиналом 100/5 не совпадает с трансформатором с номиналом 20/1 или подразделениями 100/5.

 Это связано с тем, что отношение 100/5 выражает «номинальный ток на входе / выходе», а не фактическое соотношение первичных и вторичных токов.

 Также обратите внимание, что число витков и ток в первичной и вторичной обмотках связаны обратно пропорционально.

Но относительно большие изменения в соотношении витков трансформаторов тока могут быть достигнуты путем изменения первичных витков через окно трансформатора ток, где один первичный виток равен одному проходу, а более одного прохода через окно приводит к изменению электрического соотношения.

Так, например, трансформатор тока с отношением, скажем, 300 / 5А можно преобразовать в другой из 150 / 5А или даже 100 / 5А, пропустив основной первичный проводник через его внутреннее окно два или три раза, как показано ниже. Это позволяет более высокому значению трансформатора тока обеспечивать максимальный выходной ток для амперметра, когда используется на меньших первичных линиях тока.

Чем отличается трансформатор тока от трансформатора напряжения

Пример трансформатора тока

Трансформатор тока стержневого типа, который имеет 1 виток на своей первичной обмотке и 160 витков на своей вторичной обмотке, должен использоваться со стандартным диапазоном амперметров с внутренним сопротивлением 0,2 Ом. Амперметр необходим для полного отклонения шкалы, когда первичный ток составляет 800 А. Рассчитайте максимальный вторичный ток и вторичное напряжение на амперметре.

Вторичный ток:

Чем отличается трансформатор тока от трансформатора напряжения

Напряжение через амперметр:

Чем отличается трансформатор тока от трансформатора напряжения

Выше мы видим, что, поскольку вторичная обмотка трансформатора тока подключена к амперметру с очень малым сопротивлением, падение напряжения на вторичной обмотке составляет всего 1,0 В при полном первичном токе.

Однако, если амперметр был удален, вторичная обмотка фактически разомкнута, и, таким образом, трансформатор действует как повышающий трансформатор.

 Это частично связано с очень большим увеличением намагничивающего потока во вторичном сердечнике, поскольку реактивное сопротивление вторичной утечки влияет на вторичное индуцированное напряжение, потому что во вторичной обмотке нет противоположного тока, чтобы предотвратить это.

Результатом является очень высокое напряжение, наведенное во вторичной обмотке, равное отношению: Vp (Ns / Np), развиваемое через вторичную обмотку. Например, предположим, что наш трансформатор тока сверху используется на трехфазной линии электропередачи напряжением 480 вольт. Следовательно:

Чем отличается трансформатор тока от трансформатора напряжения

Это высокое напряжение связано с тем, что отношение вольт на витки в первичной и вторичной обмотках практически постоянно, а поскольку Vs = Ns * Vp, значения Ns и Vp являются высокими значениями, поэтому Vs чрезвычайно велико.

По этой причине трансформатор тока никогда не следует оставлять разомкнутым или работать без нагрузки, когда через него протекает основной первичный ток, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании. Если амперметр (или нагрузка) должен быть удален, сначала следует установить короткое замыкание на вторичных клеммах, чтобы исключить риск удара током.

Это высокое напряжение объясняется тем, что когда вторичная обмотка разомкнута, железный сердечник трансформатора работает с высокой степенью насыщения и ничто не может его остановить, он создает аномально большое вторичное напряжение, и в нашем простом примере выше это было рассчитано на 76,8 кВ ! Это высокое вторичное напряжение может повредить изоляцию или привести к поражению электрическим током при случайном прикосновении к клеммам трансформатора тока.

Ручные трансформаторы тока

Чем отличается трансформатор тока от трансформатора напряжения

В настоящее время доступно много специализированных типов трансформаторов тока. Популярный и портативный тип, который может быть использован для измерения нагрузки цепи, называется «клещами», как показано на рисунке.

Измерители зажимов открывают и закрывают вокруг проводника с током и измеряют его ток, определяя магнитное поле вокруг него, обеспечивая быстрое считывание результатов измерений, как правило, на цифровом дисплее без отключения или размыкания цепи.

Наряду с ручным зажимом типа трансформатора тока имеются трансформаторы тока с разделенным сердечником, у которых один конец съемный, поэтому нет необходимости отсоединять проводник нагрузки или шину для его установки. Они доступны для измерения токов от 100 до 5000 ампер, с квадратными размерами окна от 1 ″ до более 12 ″ (от 25 до 300 мм).

Подводя итог, можно сказать, что трансформатор тока (ТТ) представляет собой тип измерительного трансформатора, используемого для преобразования первичного тока во вторичный ток через магнитную среду. Его вторичная обмотка обеспечивает значительно уменьшенный ток, который можно использовать для обнаружения условий сверхтока, пониженного тока, пикового или среднего тока.

Первичная катушка трансформатора тока всегда соединена последовательно с главным проводником, в результате чего ее также называют последовательным трансформатором.

 Номинальный вторичный ток рассчитан на 1А или 5А для простоты измерения.

 Конструкция может представлять собой один первичный виток, как в типах тороидальных, кольцевых или стержневых, или несколько витков первичной обмотки, как правило, для малых коэффициентов тока.

Трансформаторы тока предназначены для использования в качестве устройств пропорционального тока. Поэтому вторичная обмотка трансформаторов тока никогда не должна эксплуатироваться в разомкнутой цепи, точно так же, как трансформатор напряжения никогда не должен работать при коротком замыкании.

Очень высокое напряжение возникает в результате разомкнутой цепи вторичной цепи трансформатора тока под напряжением, поэтому их клеммы должны быть замкнуты накоротко, если амперметр должен быть удален или когда ТТ не используется перед включением питания системы.

В следующей статье о трансформаторах мы рассмотрим, что происходит, когда мы соединяем вместе три отдельных трансформатора в конфигурации «звезда» или «треугольник», чтобы получить более мощный силовой трансформатор, называемый трехфазным трансформатором, который используется для питания трехфазных источников питания.

Источник: https://meanders.ru/chto-takoe-transformator-toka-princip-raboty-tipy-shemy.shtml

Трансформатор?. Для чего нужен ? трансформатор? Устройтво и принцип действия трансформаторов

Свойства магнитного поля изучаются учеными давно. Впервые электромагнитную индукцию описал Майкл Фарадей. А именно как появляется прочная электромагнитная взаимосвязь в обмотках при создании переменного тока в первой катушке.

Читайте также:  Разница между щебнем и гравием

Во вторичной же катушке повышается напряжение, но мощность и частота остаются прежними. Конечно, несведущему человеку в электричестве сложно понять конструкцию, принцип действия, предназначение трансформатора.

Однако, это неотъемлемый прибор с установкой во многих сферах: радиотехника, электроэнергетика.

Трансформаторы напряжения: назначение и принцип действия

Трансформатор – электрическое устройство. Преобразует переменный ток одного напряжения в электрический ток другого напряжения. Частота, согласно явлению электромагнитной индукции, остается неизменной.

Состоит статический трансформатор из:

  • первичной и вторичной обмотки;
  • сердечника.

Применяется устройство в разных схемах питания и электроприборах. Передает электроэнергию на большие расстояния и:

  • снижает потери энергии;
  • уменьшает площадь сечения проводов ЛЭП.

Чем отличается трансформатор тока от трансформатора напряжения

Разновидности прибора:

  • повышающий;
  • понижающий;
  • силовой;
  • вращающийся;
  • импульсный;
  • разделительный;
  • согласующий.

Понижающий трансформатор применяется в быту. Именно через него проходит и поступает ток в домашние розетки с мощностью 220 Вт.

Силовой агрегат в составе из сердечника и нескольких обмоток преобразует напряжение в электроцепи по принципу электромагнитной индукции. Также значение напряжения переменного тока без изменений его частоты. Применяется для распределения и передачи электрической энергии. Напряжение в обмотках – свыше 300 кВ. Мощность – от 4 кВ до 200000 кВА.

Справка! Трансформатор служит для понижения либо повышения переменного напряжения. Основой является ферромагнитный сердечник. В дополнение для бесперебойной работы – обмотки, изоляция, магнитопровод, система охлаждения.

Обмотки выполнены из изолированных медных проводов прямоугольного сечения. Между их слоями находятся пустоты для циркуляции охлаждающего масла. Роль которого – отбирать тепло у обмоток, передавать через радиаторные трубки в окружающую среду.

Чем отличается трансформатор тока от трансформатора напряжения

Принцип действия устройства основан на:

  • изменении магнитного потока;
  • создании электромагнитной индукции при прохождении через обмотку;
  • подаче напряжения на первичную обмотку;
  • воспроизведении магнетизма электрическим током, изменяющимся во времени.

Переменный ток, протекая по первичной обмотке, начинает создавать в магнитопроводе магнитный ток. Постепенно приводит к потоку во всех обмотках, преобразуя гальваническую развязку (переменное напряжение), но без видоизменения частоты.

Стоит знать! Действие прибора основано на электромагнитной индукции. За счет переменного тока образуется магнитное переменное поле вокруг проводника, видоизменяется в электродвижущую силу. Напряжение на выходе полностью зависит от используемого (понижающего, повышающего) трансформатора. Коэффициент ЭДС в обмотках прямо пропорционален количеству витков.

Для чего нужен трансформатор напряжения?

Трансформатор напряжения – универсальное устройство. Передает и распределяет энергию.

Используются в:

  • электроустановках;
  • блоках питания;
  • агрегатах передачи электроэнергии;
  • устройствах обработки сигналов;
  • источниках питания приборов.

Силовой трансформатор с большим напряжением применяется для:

  • подачи энергии в электросети на электростанциях;
  • повышения напряжения генератора, линии электропередач;
  • снижения напряжения, доходящего до потребительского уровня.

Чем отличается трансформатор тока от трансформатора напряжения

Трехфазный прибор со специальной системой охлаждения используется в электросетях. Сердечник в составе – общий для всех 3-ех фаз.

Область применения сетевого трансформатора – источники электропитания, узлы электроприборов с разным напряжением. Импульсные агрегаты незаменимы для радиотехнических, электронных устройств. Сначала выпрямляют переменное напряжение в блоках питания. Далее за счет инвертора преобразуют высокочастотные импульсы, стабилизирующие постоянное напряжение.

Трансформаторы входят в состав многих схем питания для обеспечения минимального уровня высокочастотных помех. Например, разделительные установки предотвращают угрозу поражения электрическим током для человека. Ведь включение бытовых приборов в сеть через трансформатор становится безопасным.

Вторая цепь у прибора будет изолирована от контактов с землей, если конечно, речь идет о заземлении электрического оборудования. Измерительные силовые приборы применяются в схемах генераторов переменного тока. Количество фаз у генератора из трансформатора должно совпадать для достижения стабильного напряжения на выходе.

Согласующие трансформаторы незаменимы для электронных устройств с высоким входным сопротивлением и высокочастотных линий, но с разным сопротивлением нагрузки.

Как работает трансформатор напряжения?

Приборы преобразуют энергию источника в необходимый коэффициент напряжения. Работают исключительно при переменном напряжении с постоянной частотой. В основе работы – электромагнитная индукция как явление, срабатываемое при изменении во времени магнитного потока, порождении ЭДС в обмотках.

Работа трансформатора начинается в первичной обмотке, где сердечник создает магнитный поток.

Далее задействуется переменный ток, намагничивает сердечник, повышает индуктивность первичной обмотки, препятствует нарастанию тока на выводах обмотки напряжения.

Если первичная обмотка отдает магнитный поток, то вторичная принимает его, изменяет с определенной скоростью, пронизывая все ветки и создавая ЭДС.

Чем отличается трансформатор тока от трансформатора напряжения

Напряжение на ветках в полной мере зависит от быстроты изменения магнитного потока в сердечнике. Хотя получается одинаковым на ветках первичной и вторичной обмотки благодаря прохождению через них одного и того же магнитного потока.

Он в свою очередь создает вокруг себя электрическое поле в сердечнике, некий вихрь с воздействием на электроны, начиная толкать их в определенную сторону.

Справка! Если сказать проще, то принцип работы трансформатора напряжения основан на возбуждении напряжения во второй обмотке за счет возникшего переменного тока в магнитопроводе.

Чем отличается трансформатор тока от трансформатора напряжения?

Источником питания для трансформатора тока является непосредственно ток. Если он не будет проходить через обмотки, тот агрегат быстро выйдет из строя. Питание для трансформатора напряжения – источники напряжения и он также не будет функционировать при повышенных нагрузках тока.

Отличие между устройствами в разных электрических величинах и схемах включения.

Измерительные трансформаторы напряжения и тока

  • Приборы с работой под высоким напряжением нуждаются в периодическом измерении.
  • Чем отличается трансформатор тока от трансформатора напряжения
  • Для чего этих целей в помощь – измерительные устройства, которые:
  • снижают величину напряжения до нужного уровня;
  • обеспечивают гальваническую развязку измерительному оборудованию от цепей с повышенной опасностью.

Номинальная мощность, напряжение и ток

Номинальная – мощность, с которой трансформатор работает в определенном классе точности и в соответствии с ГОСТом. Выражается в вольтах, амперах. Незначительные отклонения мощности допускаются, но не выше нормированных величин.

Важно! Во избежание повышения погрешности вторичной нагрузки суммарное потребление обмоток измерительных приборов и реле не должно быть более номинальной мощности трансформатора. Узнать номинальную мощность можно в паспорте к агрегату либо на щитке.

Порог номинального напряжения у трансформатора – 10кВ.

Разница в зависимости от мощности электроприборов составляет для:

  • питания электроприемников – 3-6,3кВ;
  • крупногабаритных электродвигателей – до 1000В.

Мощность трехфазного трансформатора вычитается по формуле: – S=квадратный корень цифры 3 UIU—номинальное междуфазное напряжение, В; / — ток в фазе, А. Коэффициенты рабочих токов в обмотках при рабочем состоянии трансформатора не должны быть выше номинальных Хотя кратковременные перегрузки в масляных и сухих агрегатах до определенных пределов (2,5 -3%) приемлемы.

Закон Фарадея

Чем отличается трансформатор тока от трансформатора напряжения

По закону электромагнитной индукции во вторичной обмотке создается ЭДС напряжение. Вычисляется по формуле – U2 = −N2*dΦ/dt.

Справка! Фарадея – основной закон электродинамики. Гласит о том, что генерируемая электродвижущая сила равняется скорости изменения магнитного потока, но взятой со знаком минус.

Именно Майкл Фарадей сделал открытие, когда в ходе экспериментов объявил, что электродвижущая сила начинает появляться в проводнике только при изменении магнитного поля.

Величина этой силы прямо пропорциональна скорости изменения магнитного поля.

Все факты содержатся в одном уравнении. Однако, знак минус в законе – правило Ленца, указывающее на возникновение индукционного электрического тока при изменении магнитного поля в проводнике. Действие тока направлено на магнитное поле, начинающего противодействовать изменению магнитного потока.

Правило Ленца не подчиняется законам электродинамики, ведь индукционный ток появляется как в обмотках, так и в сплошных металлических блоках.

Уравнения идеального трансформатора

В таком трансформаторе силовые линии проходят через все ветки первичной, вторичной обмотки. Значит, отсутствуют вихревые потоки и потери энергии. Магнитное поле изменяется, но порождает идентичную ЭДС во всех витках, поэтому становится прямо пропорциональным их общему числу.

Энергия при поступлении из первичной цепи трансформируется в магнитное поле, далее поступает во вторичной цепи.

Формула уравнения идеального трансформатора – P1 = I1 • U1 = P2 = I2 • U2:

  • R1 – коэффициент поступающей мощности из первой цепи на трансформатор;
  • R2 – коэффициент преобразованной мощности с поступлением во вторичную цепь.

Если повысить напряжение на концах вторичной обмотки, то снизится уровень тока первичной цепи. Согласно уравнению – U2/U1 = N2/N1 = I1/I2 преобразование сопротивления одной цепи к сопротивлению другой возможно только при умножении величины на квадрат отношения.

Как правильно подключить

  1. Во всех тонкостях электрики сложно разобраться простому человеку, но при использовании трансформатора понижающего типа в быту важно понимать, как происходит процесс подключения.
  2. Бывает, что возникает потребность подключения агрегата сразу на нескольких потребителей.

  3. Стоит знать:
  1. При подключении трансформатора сразу на несколько потребителей важно учитывать количество выходных клемм.
  2. Общая потребляемая мощность для жильцов должна быть идентичной мощности трансформатора либо немного ниже. По мнению специалистов, идеальный второй показатель выше первого – на 20%.

  3. Подключается агрегат через электрическую проводку, размер которой не должен быть слишком большим. Достаточно 2 м при монтаже светодиодного освещения во избежании потери мощности.
  4. Суммарная мощность электроприборов не должна быть выше мощности трансформатора.

Если посмотреть на схему подключения понижающего трансформатора, то видно, что монтируется между распределительной коробкой мощностью 220 Вт и лампами накаливания. Провода из распредкоробки подключаются непосредственно к выключателю.

Чем отличается трансформатор тока от трансформатора напряженияПодключение трансформатора напряжения

Дополнительная информация! Стоит изначально определять правильное место установки электрического понижающего трансформатора. Нельзя его усердно прятать от посторонних глаз, ведь доступ для демонтажа либо замены должен быть свободным. При этом потребляемая мощность – не ниже мощности трансформатора, иначе процесс монтажа проводить запрещено.

При подключении важно, чтобы совпадали все уравнения, касающиеся модели прибора. Также существенное значение имеет фазировка, если в одну цепь подключается сразу несколько приборов параллельно.

Во избежание больших потерь мощности фазы должны быть правильно соединены между собой с образованием замкнутого контура. При несовпадении фаз начнет расти нагрузка и падать мощность.

Может произойти короткое замыкание.

Важно! Смотрите на фото, как выглядит упрощенный вид трансформатора.

Трансформатор – электромагнитный аппарат. Повышает либо понижает напряжение переменного тока. Он лишен подвижных частей. Значит, является статическим. По размерам бывает с трехэтажное здание либо миниатюрное, помещаемое в руку. В составе – сердечник и несколько обмоток с расположением на магнитопроводе. Хотя может содержать всего одну обмотку без сердечника.

При работе трансформатора срабатывает принцип электромагнитного взаимодействия. Переменный ток подается на первичную обмотку, меняет направление дважды за цикл. Значит, что вокруг обмотки образуется магнитное поле, но ежесекундно исчезает. Вторичная обмотка – проводник электромагнитного взаимодействия. Там же индуцируется напряжение.

Конечно, простому человеку сложно понять конструкцию, назначение прибора. Для познания можно просто разобрать, прозвонить, подключить или демонтировать в домашних условиях.

Источник: https://remont220.ru/osnovy-elektrotehniki/1109-transformator/

Чем отличается трансформатор тока от трансформатора напряжения: разница, особенности

Настолько ли важно знать: чем отличаются трансформаторы тока от трансформаторов напряжения? На практике при проведении замеров, в том числе радиолюбительской, должна решаться  задача изолирования (отделения) измерительного прибора и самого себя от цепей с высоким электрическим потенциалом. Нередко требуется понизить ↔ повысить напряжение переменного тока, согласовать выходное сопротивление каскадов с нагрузкой, сделать гальваническую развязку от питающей сети

Разберемся в определениях

С первой задачей успешно справляются трансформаторы тока (ТТ), а все последующие решают трансформаторы напряжения (ТН).

Преобразователи тока предназначены для изменения I2 во вторичной обмотке. Во вторичке  протекает тот же переменный ток, только с комфортными (безопасными) для проведения измерений значениями. Существуют измерительные, защитные и лабораторные исполнения, специально предназначенные для подключения в электрическую цепь приборов с высоким импедансом токовых катушек.

Читайте также:  Конкор и беталок зок: сравнение и что лучше

Преобразователи напряжения меняют U2 на низкое или, наоборот, его повышают. Это отличный способ «подгонки» электрической сети под  стандарт электроприемника. Электрическая мощность с высоким КПД способом электромагнитной индукции передается с первичной обмотки в нагрузку электроприемника.

Трансформатор напряжения

Номенклатура изделий ТН очень разнообразна. Существует много позиций 5-ти  типов изделий, отличающихся по своему назначению.



Силовой

В бытовой технике наиболее широко применяется силовой вид устройств, предназначенных для питания от сети 220В 50Гц. Это классические устройства, состоящие из W1 и  одной или нескольких обмоток W2 на железном сердечнике. В зависимости от конфигурации магнитопровода бывают стержневые, кольцевые и тороидальные силовые ТН.

Измерительный

Этот аппарат аналогичен по принципу исполнения силовому, только рассчитан на подключение измерительных приборов, реле защиты и автоматики. Он позволяет использовать стандартные измерительные приборы для замеров высокого напряжения без вмешательства в конструктив.

Согласующий

Тип СТ согласовывает импеданс источника сигнала с импедансом нагружаемого каскада. Изделия подобного типа служат для согласования различных узлов в широком диапазоне частот (НЧ, СВЧ).

Чем отличается трансформатор тока от трансформатора напряжения

Лабораторный

Эти устройства задействуются для проведения различных экспериментов, отладки РЭА, активно используются в радиолюбительстве. Они представляют ступенчатые регуляторы U. В отличие от ЛАТРа, достойной альтернативой которому  является, устройство имеет гальваническую развязку от сети 220В, 50 В.

Высоковольтный

Представляет однофазное и трехфазное электромагнитное устройство в открытом или литом блочном исполнении. Обычно номинальная мощность устройства ≤ 600 кВА, входное U1 не превышает 20 кВ, а выходное U2 ≤ 15 кВ.

Чем отличается трансформатор тока от трансформатора напряжения

Трансформатор тока

ТТ – это преобразователь  тока, состоящий из  первичной катушки, подключенной к источнику тока, а также вторичной, соединенной с нагрузкой. ТТ используется для подключения приборов и устройств с малым внутренним сопротивлением.

Измерительные

Измерительные аппараты преобразовывают уровень I в удобное для проведения замеров значение. Обмотка W1 включается в разрыв измеряемой цепи АС, а к вторичке W2 подключаются измерительные приборы. Полученное значение параметра пересчитывается и приводится к значению первичной катушки.

Защитные

Защитные или быстронасыщающиеся трансформаторы (БННТ) отличаются от измерительных аналогов высокой индукцией в сердечнике, даже при номинальном токе. Поэтому при сравнительно небольшом росте рабочего тока они входят в насыщение, защищая подключаемые к W2 приборы от пробоя сверхтоком. БННТ обычно применяются в средствах релейной защиты.

Лабораторные

Измерительные ТТ с высоким классом точности. Особенностью аппарата является наличие нескольких отпаек от витков с разными коэффициентами трансформации. Они позволяют снимать показания измерительными приборами с разными входными сопротивлениями.

Чем отличается трансформатор тока от трансформатора напряжения

Ключевое отличие ТТ от ТН

Трансформаторы  I по конструктиву значительно отличаются от трансформаторов U. По внешнему виду ТН ассоциируется с трансформатором в общепринятом понимании, то есть с многовитковой первичной и вторичной обмоткой. ТТ больше напоминает дроссель ввиде W2, одетой на провод большого сечения.

Первичная обмотка может состоять не из нескольких, а из одного неполного витка на магнитопроводе.

Назначение

Преобразователи U предотвращают массу происшествий с техникой по причине девиаций параметров сети: порчи от низкого вольтажа или экстремально высокого U2. Тем самым они увеличивают степень безопасности и предотвращают порчу приборов от нестабильных параметров электропитания, поскольку в трансформаторных блоках питания СБТ рабочее напряжение снижается в несколько раз.

Разница заключается в том,  что преобразователи I сконструированы под измерительную аппаратуру или выступают в качестве защитного устройства.

Чем отличается трансформатор тока от трансформатора напряжения

Место в электрической цепи

ТТ в основном они применяются для понижения I до величины, пригодной для измерения. Они используются в тех местах локализации проводников, где требуется определить значение силы переменного тока. Подключение первичной обмотки производится в разрыв цепи, а вторичную катушку электромагнитного устройства подключают к эталонному резистору с известным номиналом.

С помощью амперметра и вольтметра производят замеры параметров, которые после несложного пересчета дают значение искомой силы тока в первичной обмотке. ТТ используют в силовых распределительных щитах, электрических счетчиках, устройствах релейной защиты.

Различие по месту в электрической цепи

ТТ от ТН связано с применением последних аппаратов в качестве:

  • гальванической развязки цепей с высоким напряжением от каскадов с низким вольтажом;
  • повышающих или понижающих напряжение устройств;
  • устройств согласования каскадов с разным импедансом.

ТН применяются как в качестве мощных трансформаторов подстанций и промышленных объектов, так и среднемощного электросварочного оборудования, блоков питания СБТ и маломощных бытовых электроприемников.

Чем отличается трансформатор тока от трансформатора напряжения

Режим работы

Благоприятным режимом работы ТН является режим, приближенный  к холостому ходу, тогда нагрузка на выходную катушку минимальная. Оптимальным сопротивлением нагрузки ТН считается та, которая  равна или до 1,5 раз больше сопротивления вторичной обмотки.

Напротив, ТТ нельзя включать без нагрузки во вторичной обмотке. Потому что при «бесконечном» сопротивлении на ней будет очень высокое (теоретически «бесконечное») напряжение, способное вызвать пробой изоляции и вывести аппарат из строя.

Источник: https://OTransformatore.ru/vopros-otvet/chem-otlichaetsya-transformator-toka-ot-transformatora-napryazheniya/

Трансформатор тока и напряжения. Главные отличия

Подробности Опубликовано 24.05.2018 17:50

Существует ряд электрических трансформаторов, которые производятся для различных функций и требований. Независимо от их конкретного стиля и дизайна, различные виды используют точно такую же концепцию Майкла Фарадея.

В которой говорится, что взаимодействие электрического и магнитного полей создает электродвижущую силу, изменение электрического поля создает магнитное поле, тогда как изменение магнитного поля создает электрическое поле.

Два основных типа трансформаторов, то есть трансформаторы тока и трансформаторы напряжения, имеют много отличий, но главным является то, что трансформатор напряжения используется для регулирования напряжения на вторичной стороне трансформатора, тогда как ток трансформатора регулируется на вторичной стороне, имея в виду произведение напряжения и тока, которое является мощностью, остается неизменным, если ток регулируется либо он поднят, либо понижен, то напряжение будет взаимно изменять его значение, чтобы сохранить значение мощности, поскольку мощность является продуктом тока и напряжения. В трансформаторе напряжения вторичный ток напрямую связан с первичным током. Вторичный ток зависит от напряжения в дополнение к сопротивлению нагрузки. Тогда как в трансформаторе тока: вторичная обмотка может быть закорочена. Разомкнутая вторичная обмотка может привести к повреждению трансформатора.

Трансформатор тока

Чем отличается трансформатор тока от трансформатора напряжения

Трансформатор тока, который часто упоминается как ТТ, регулирует переменный ток. На его вторичном конце переменный ток пропорционален значению тока на его первичной обмотке. Трансформатор тока обычно используется для обеспечения изолированного тока на его вторичных клеммах. Трансформаторы тока широко используются в целях измерения тока и проверки всего процесса энергосистемы. Трансформаторы тока используют для измерения электроэнергии практически для каждого здания с трехфазными службами и однофазными услугами более двух сотен ампер. Купить трансформатор тока можно на сайте http://www.zvo.com.ua

Трансформаторы тока уменьшают токи высокого напряжения до некоторого уменьшенного значения и обеспечивают удобный метод правильной проверки конкретного электрического тока, движущегося в линии передачи переменного тока с использованием стандартного амперметра. Ключевая работа трансформатора тока абсолютно ничем не отличается от работы обычного трансформатора.

Трансформатор напряжения

Чем отличается трансформатор тока от трансформатора напряжения

Трансформатор напряжения, который также называется потенциальным трансформатором. Он используется в энергосистеме электрической энергии для снижения или повышения напряжения системы до некоторого защищенного значения.В линиях передачи, где единственной целью является минимизация потерь в линии, потенциальный трансформатор увеличивает напряжение, так что потери в линиях можно избежать настолько, насколько это возможно. Поэтому, как правило, в линиях передачи напряжения очень высокие.

В случае типичного понижающего трансформатора, он имеет меньшее количество витков первичной, чем его вторичные обмотки, с целью снижения апряжения.

Напряжение системы подается на клеммы первичной обмотки этого трансформатора, после чего вторичное напряжение появляется в соответствии с коэффициентом трансформации на вторичных выводах трансформатора напряжения. Обычно вторичное напряжение составляет 220 вольт.

Идеальный трансформатор напряжения — это тот, в котором отношение первичного и вторичного напряжений совпадает с отношением с количеством витков первичной и вторичной обмотки.

Ключевые отличия:

  • В трансформатора тока ток и плотность изменяются в широких пределах, но в трансформаторе напряжения он изменяется в небольшом диапазоне.
  • Первичный трансформатор тока имеет небольшое напряжение на нем, в то время как трансформатор напряжения имеет полное напряжение питания
  • Трансформатор тока применяется в цепи последовательно, в то время как потенциальный трансформатор применяется параллельно
  • Первичный ток трансформатора не зависит от нагрузки, а разность потенциалов зависит от нагрузки
  • Можно измерить высокие напряжения малыми вольтметрами с использованием трансформатора напряжения, тогда как высокие токи измеряются малыми амперметрами с использованием трансформаторов тока
  • Первичный ток не зависит от нагрузки, тогда как первичный ток трансформатора напряжения зависит от внешних условий, которые являются нагрузкой

Источник: http://myelectro.com.ua/1031-transformator-toka-i-napryazheniya-glavnye-otlichiya

Ключевые отличия трансформатора тока от трансформатора напряжения

Содержание:

Трансформаторы тока

Чтобы понять, чем отличается трансформатор тока от трансформатора напряжения, необходимо знать особенности первого и второго устройства. Трансформаторы тока созданы — в первую очередь — как измерительные или же защитные приборы.

Основную функцию данных трансформаторов легко понять. Они строго «следят» за тем, чтобы каждый, кто залез в электрическую сеть, не получил смертельный удар. Отличительной особенностью является строгое контролирование.

В самой электрической системе для комфортной работы приборов поддерживается очень высокое напряжение. Однако любая техника рано или поздно может дать сбой, поэтому обязательно нужно оставить окно, через которое специалисты-ремонтники смогут проверять состояние сети, проводить профилактические работы.

Происходит это за счет трансформатора тока, который в определенном месте дает максимально безопасный доступ.

  • Измерительные трансформаторы

Измерительные трансформаторы представляют собой особые приборы. Основная их задача —  преобразовывать переменный ток, в итоге получается такой же переменный, но уже с допустимыми для измерения значениями. С помощью данного устройства можно подключить к цепи  вольтметр, амперметр или любой другой измерительный прибор.

Также имеется дополнительная функция — возможность подключить любую технику, не испортив ее, а также получить максимально точный и правильный результат измерений (иногда даже десятые доли могут радикально изменить картину).

Независимо от конкретного типа основная особенность трансформатора тока заключается в особой точности, а также в возможности образовывать некоторую необходимую безопасную изоляцию.

Трансформаторы напряжения ↑

Трансформаторы тока и напряжения имеют разное предназначение.

Вторые созданы для изменения напряжения с высокого на низкое и наоборот. Это отличный способ «подогнать» определенную электрическую сеть под нужный стандарт.

Подобные трансформаторы позволяют достичь необходимого уровня безопасности, предотвратить огромное количество чрезвычайных происшествий, спасти жизни и здоровье людей, а также оставить огромное количество приборов исправными.

Мало кто знает, что трансформаторы напряжения присутствуют практически в каждом приборе для того, чтобы защитить его от внезапного повышения напряжения, например, при ударе молнии или же в случае нарушения правил эксплуатации.

Основное отличие ↑

Основное отличие этих двух трансформаторов (напряжения и тока) заключается именно в их предназначении и функциях, которые они надежно выполняют.

Основная задача устройства для тока состоит в защите или в обеспечении точности, которая просто необходима для различных измерений или же любого обслуживания электрических сетей как в конкретном месте, так и в комплексе.

Читайте также:  Чем лучше наносить пудру спонжем или кистью?

Назначение же трансформатора напряжения связано не с проверками и измерениями и даже не с ремонтом и профилактикой, а непосредственно с эксплуатацией. Невозможно запустить сеть без данного аппарата.

Обязательно нужно преобразовывать напряжение с пониженного на повышенное.

Именно с помощью подобных трансформаторов можно использовать везде универсальную электрическую сеть, ток в которой изменяется данным аппаратом и подходит под любую технику, будь то бытовые приборы или же устройства промышленного назначения.

Также стоит отдельно отметить опасность каждого трансформатора.

Угрожает безопасности отсутствие или неработоспособность устройства, регулирующего напряжение: если неожиданно единица измерения повысится в большую сторону, то могут быть очень серьезные последствия, которые чреваты разнообразными трагедиями — от  пожаров до других бедствий. Также отсутствие изоляции угрожает ремонтникам, а отсутствие точных измерений может нарушить работу; но слишком серьезных последствий практически невозможно добиться.

Предназначение в электрической сети ↑

Присутствие и одного, и другого трансформатора в электрической сети незаменимо. Трансформатор напряжения встречается практически везде. Он может быть встроен в каждый бытовой прибор. Обязательно находится в общедомовой сети, не говоря уже о более серьезных промышленных объектах.

Отличительной особенностью работы трансформатора тока является то, что он не нужен на каждом мелком объекте, он подходит для достаточно крупных предприятий, куда подводится сеть очень большой мощности.

Настолько большой, что необходима дополнительная изоляция даже для того, чтобы просто измерить все величины.

Не стоит путать эти трансформаторы, это может иметь очень печальные последствия. Нужно грамотно разбираться в данной технике для того, чтобы устанавливать и ремонтировать ее, правильно пользоваться и знать все опасности.

Чем отличается трансформатор тока от трансформатора напряжения

Если хотите заказать диагностику трансформаторов или задать вопрос, звоните по телефону: +7 (495) 181-50-34.

Источник: https://energiatrend.ru/news/otlichiya-transvormatorov-toka-ot-transformatorov-napryazheniya

Трансформатор тока — принцип работы, назначение и устройство

При необходимости контроля над токами, протекающими в электрической сети, применяют измерительные трансформаторы тока и напряжения.

Подключенные специальным образом подобные устройства снижают измеряемые параметры электрической цепи до величин, подходящих для их измерения. Таким образом, происходит разделение сильноточной цепи от цепи слаботочной.

Это необходимо для того, чтобы измерительная или иная аппаратура, в которую включена вторичная обмотка трансформаторов, не вышла из строя.

Индуктивные связи в трансформаторах тока (ТТ)

Согласно основному закону электромагнитной индукции, который обосновал Фарадей, все трансформаторы напряжения (ТН) и тока (ТТ) работают по принципу взаимной индукции. Если расположить на одном замкнутом магнитном сердечнике две обмотки и подключить одну из них к источнику переменного тока, то изменяемый магнитный поток вызовет возникновение электродвижущей силы (ЭДС).

Важно! Такую ЭДС называют индуцируемой. Во второй (вторичной) обмотке устройства в результате взаимодействия магнитных полей также индуцируется ЭДС, и начнёт протекать электрический ток.

Особенности трансформации энергии для ТТ

Что такое диод — принцип работы и устройство

Чтобы понять, для чего нужны трансформаторы тока, и отличие их от трансформаторов напряжения (ТН), можно рассмотреть их конструкцию.

Присутствие в электрических схемах подобных устройств связано с необходимостью трансформировать: понизить или повысить напряжение или ток.

Переменное электричество, вырабатываемое генераторами на электростанциях, перед передачей по сетям энергосистемы предварительно подвергается трансформации.

Как работает устройство

Когда стало понятно, что из себя представляет трансформация, пришло время рассмотреть подробнее принцип действия трансформатора тока.

Особенности применения и выбора измерительных трансформаторов тока

На замкнутый сердечник (магнитопровод), собранный из пластин, надеты две обмотки. Первая катушка включена последовательно в силовую цепь нагрузки. Вторичная катушка своими выводами подключена к измерителям. Сердечник собран из пластин кремнистой стали холодного качения.

К сведению. Учёт электроэнергии выполнен именно таким способом. В однофазные и трёхфазные цепи включены трансформаторы тока, которые позволяют снимать показания по каждой фазе, подавая данные на счётчик.

При прохождении переменного электричества по виткам первой (основной) обмотки вокруг неё образуется переменный магнитный поток Ф1. Поток Ф1, пронизывая все обмотки трансформатора, индуцирует в них ЭДС (Е). В этом случае возникают Е1 и Е2. При подключении в цепь вторичной обмотки любой нагрузки через неё начнётся движение электричества.

Особенности конструкции

Из чего состоят такие трансформаторы? Чем отличается трансформатор тока от трансформатора напряжения? На эти вопросы можно найти ответы в описании особенностей конструкций. Трансформаторы тока, назначение и принцип действия их, подразумевают постоянство некоторых условий:

  • всякий ТТ должен иметь на своём магнитопроводе больше одной обмотки;
  • обмотки, являющиеся вторичными, непременно подключаются к нагрузке (Rн);
  • сопротивление Rн не должно содержать отклонений от заявленных в документах ТТ;
  • первичная обмотка изготавливается как шина, проходящая через сердечник или в форме катушки.

Новые счетчики электроэнергии: принцип работы и преимущества

Отсутствие нагрузки по вторичной обмотке не обеспечивает возникновение в сердечнике магнитного потока Ф2, который обладает компенсирующим свойством. Это приводит к повышению температуры сердечника и его расплавлению. Нагрев происходит от того, что Ф1 приобретает слишком высокое значение.

Отклонение сопротивления Rн влияет на погрешность измерений и ухудшает их. В случае превышения сопротивления во вторичной обмотке повышается напряжение U2, и изоляция ТТ может не выдержать. Произойдёт пробой, и прибор выйдет из строя.

Информация. Трансформаторы напряжения (ТН) отличаются от ТТ по способу применения и схеме включения.

Они присоединяются параллельно и определены для повышения или понижения напряжения, развязки силовой схемы от схемы управления и контроля. Основной регламент работы ТН близок к режиму холостого хода (х.х.).

Это обусловлено тем, что параллельно включенные элементы схемы управления потребляют малый ток, а их Rн большое.

Классическое устройство ТТ

Схемы подключения измерительных ТТ

Монтаж трансформаторов тока выполняют по определённой схеме. Это зависит от напряжения измеряемой сети, а именно:

  • в 3-х фазных сетях с Uн до 1000 В ТТ встраиваются в цепь каждой фазы;
  • в 3-х фазных сетях с Uн 6-10 кВ установка осуществляется на две фазы (А и С).

В первом варианте, в электроустановках (ЭУ), где нейтраль глухозаземлена, концы вторичных обмоток ТТ замыкаются между собой по схеме «звезда».

Во втором случае, в ЭУ с изолированной нейтралью, они присоединяются по схеме «неполная звезда».

Классификация трансформаторов тока

Принцип работы трансформатора тока, а также способы подключения и назначения позволяют провести их разделение по следующим различиям:

  • назначению;
  • типу установки;
  • способу размещения;
  • выполнению первичной обмотки;
  • типу изоляции;
  • рабочему напряжению;
  • количеству ступеней трансформации.

Кроме того, есть другие качества, позволяющие произвести классификацию ТТ. Одна из отличительных черт – специфика конструкции.

По конструктивным особенностям ТТ различаются на:

  • одновитковые;
  • многовитковые;
  • оптико-электронные.

У каждого из этих видов есть типы моделей, которые желательно рассмотреть отдельно.

ТТ катушечного типа

Это одни из несложных трансформаторов тока. Они относятся к ранним ТТ, построенным и продвигавшимся на структуре, где за основу взят силовой трансформатор.

Обе обмотки (первая и вторая) набраны на каркас с изоляционными свойствами. Каждая из них представляет собой катушку. Отсюда происходит название.

Кроме того, что они компактны и дёшевы в изготовлении, можно выделить недостаток: низкое разрядное напряжение из-за слабой изоляции катушек.

Такая конструкция позволяет использовать их только на напряжение до 3 кВ. Чтобы повысить величину Uразр., приходится увеличивать окно сердечника и отделять первичную обмотку от внутренней поверхности пластин. В образовавшийся в результате этого зазор вставляется изоляционная прокладка, имеющая п-образный вид.

Проходной трансформатор

Устройства распределения (РУ), напряжением от 6 до 35 кВ, подразумевают установку подобных трансформаторов тока. Это многовитковый ТТ, где за базу взята пара проходных изоляторов, соединённых между собой посередине. Такая сборка позволяет проходить через стены и использовать их в закрытых РУ. При этом отпадает необходимость специально задействовать проходной изолятор.

Обмотка, служащая первичной, прокладывается через пустоту, расположенную внутри. Количество витков берётся из расчёта нужных «ампер-витков» для соответствующего класса точности. Под фланцем, который заземлён, помещены втулки. В их средине закреплены магнитопроводы вторичных обмоток, закрытых кожухом.

Внимание! Расположение обмоточного вывода для первичной обмотки приходится на верхнюю плоскость, относительно заземлённого фланца.

Проходной высоковольтный ТТ

Стержневое устройство

Данный тип устройства предназначен для работы с U = 10-20 кВ и Iн = 600 и 1500 А. Такой ТТ относится к проходным одновитковым трансформаторам, имеющим фарфоровую изоляцию. У него токоведущий стержень, пронзающий фарфоровый изолятор, служит первичной обмоткой.

Стержневой трансформатор тока

Шинный прибор

Следующая конструкция предназначена для установки в комплектные трансформаторные подстанции (КТП). Они реализовывают передачу информации об измерениях на контрольно-измерительные приборы (КИП). Сигналы от аналогичных ТТ передаются также на схемы защиты и управления.

Шинный ТТ типа ТШЛ-0,66-1

Преимущества и недостатки

У каждого из перечисленных устройств есть свои плюсы и минусы. Рассматривать их предпочтительнее на разделении: одновитковые и многовитковые модели.

К плюсам одновитковых ТТ можно отнести:

  • простоту устройства;
  • низкую стоимость;
  • малые габариты;
  • устойчивость к токам КЗ (короткого замыкания).

Сюда же можно добавить то, что, изменяя сечение токовода (стержня), добиваются изменения термической устойчивости.

Минусом у таких моделей является невысокая точность при маленьких измеряемых токах.

Что касается многовитковых моделей, то явным положительным моментом является наличие некоторого количества витков в первичной обмотке. Это позволило значительно повысить класс точности измерений. К отрицательным характеристикам относятся:

  • сложность конструкции;
  • удорожание;
  • подверженность первичной обмотки межвитковым перенапряжениям.

При этом сюда же можно отнести низкую устойчивость к токам КЗ.

Параметры трансформаторов тока

Зная, по определению, что эти детали служат для измерений и защитных функций, можно догадаться, что основными их характеристиками будут: KI и класс точности.

Коэффициент трансформации KI

Трансформаторные узлы только выполняют масштабирование параметров электроэнергии, сами её не производят. Для определения величины масштабирования используют коэффициент трансформации.

  • Отношение между величиной тока (I) или напряжения (U), поданной на вход и снятой на выходе, носит название коэффициента трансформации (Ктр).
  • В случае преобразования тока речь ведут о:
  • КI = I2/I1,
  • где:
  • КI – коэффициент трансформации ТТ;
  • I1 – ток на входе;
  • I2 – ток на выходе.

Для ТТ выполняется пропорциональное отношение между первичным и вторичным токами. Это следует из выражений:

  • I1 =I2 / KI;
  • I2 = I1 * KI.

Уточнение. Номинальный Ктр ТТ отображают в виде дробного выражения. В числителе ставится номинальная величина тока, протекающего в первичной катушке, в знаменателе – величина номинального тока во вторичной электрообмотке. Он всегда больше единицы.

Таким образом, номинал измеряемого тока отображает КI ном. Указанные паспортные данные детали (КI = 65/5) обозначают то, что при пропускании через первичную катушку 65 А во вторичной катушке будет проходить ток в 5 А.

Указание значений на шильдике детали

При использовании ТТ выполняют снижение тока во вторичной цепи, что даёт возможность обеспечить безопасность эксплуатации. Во вторичную цепь включается не только измерительная аппаратура, фиксирующая значение тока, но и системы защиты или автоматического переключения. В этом случае КI < 1.

Для значений напряжения формула коэффициента иная:

KU = U2/U1.

Изменения масштабирования (знак) зависит от величины К. При K>1 трансформатор повышает подводимую электрическую величину, при значении К

Источник: https://amperof.ru/elektropribory/transformator-toka-princip-raboty.html

Ссылка на основную публикацию
Adblock
detector